If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2.7x^2+50x+3.5=0
a = -2.7; b = 50; c = +3.5;
Δ = b2-4ac
Δ = 502-4·(-2.7)·3.5
Δ = 2537.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-\sqrt{2537.8}}{2*-2.7}=\frac{-50-\sqrt{2537.8}}{-5.4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+\sqrt{2537.8}}{2*-2.7}=\frac{-50+\sqrt{2537.8}}{-5.4} $
| 7x-4+7x=3(-2x+4)-4(x-8) | | 7(5a-4)-1=24-8a | | 8x+1-6x+3=8x+5-x=3 | | 6p+2(2p+3=16 | | 96=2×3w+2w | | 2x+12x=8 | | (x+4)^1/2+5x(x+4)^3/2=0 | | -2y+7+4y=3(2y-3) | | 2(u-2)-5u=-2(u+2) | | -9m=-10m+12 | | 76=2b+b+1+26 | | n-3+3=11+2n-6=8 | | 2n+7+3n+23=180 | | -7m-m*1=9 | | -4.5=a-8 | | 2/6d+2/3=-2/4 | | 2n+7+3n+35=180 | | 4/m=28 | | -3(x+1)+7x=4(x-1)+7 | | 850=2t+250 | | -19h+15=-4h | | 4(4x+2)=6 | | X+30=2x+80 | | 4(x+5)-7(2x-9)=13 | | -6j=-3j+18 | | -1/5m=2 | | 7x2-7x+42=0 | | -4w+3w+5=-7 | | (2)/(3)x-7=(5)/(3)x | | 5g+13-9g=-19-6g | | 3(8-d)-34=27d-5(2+6d) | | 1/2x+4/5+4×=1/5x+1/2 |